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Abstract— Motion control applications traditionally operate
with a single-rate, equidistant sampling scheme. For cost
reasons, a current trend in industry is consolidating multiple
applications on a single embedded platform. Generally, to deal
with inter-application interference, a predictable scheduling
policy allocates resource to the applications in these platforms.
Realizing an equidistant sampling scheme on such shared
platform is inflexible and often turns out to be expensive in
terms of resource or conservative in terms of performance.
The aim of this paper is to investigate the possibilities to relax
the equidistant sampling convention. To this end, recent results
show that platform timing properties can be represented by
a known, precise, and periodically varying set of sampling
periods. In view of such predictable platforms, a framework
is presented for analysis and synthesis of lifted domain feed-
forward controllers for periodically time-varying closed-loop
systems. Through simulations the potential of such periodically
time-varying sampling over conservative equidistant sampling
schemes is demonstrated.

I. INTRODUCTION

Traditional motion controllers are often designed and im-
plemented using a single sampling frequency under equidis-
tant sampling, either in a continuous time with a posterior
discretization, a discrete time, or a sampled-data setting [5].
Hence, it is tacitly assumed that resources (i.e., computation,
communication, and memory) are sufficiently available.

In certain applications, increasing performance require-
ments and enhanced functionality lead to a situation where
resources are scarce. To deal with this resource limitation,
platforms are commonly shared by multiple applications.
For example, visual servoing [4] uses feedback information
from visual sensors in motion control, where both image
processing and control computation tasks are executed on
the same processor. In such shared platforms, a scheduler
statically/dynamically decides the availability of a resource
to an application, and the order of execution of various tasks
or applications. Realizing an equidistant sampling scheme in
such shared embedded implementation imposes inflexibility
and often leads to unnecessary expensive design solutions.

Recently, a potentially promising embedded platform can-
didate, Composable and Predictable System on Chip (Comp-
SOC), was introduced [8]. Composability allows for indepen-
dent development of multiple applications, while predictabil-
ity provides precise temporal behavior of the platform. The
CompSOC platform is suitable for independent development
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and interference-free execution of (control) applications. In
[14], it is shown that a resource efficient implementation of
a control algorithm in such composable platform leads to
a set of known, precise, and periodically varying sampling
periods. Whereas the majority of control design techniques
aims at a single sampling frequency, the aim of the present
paper is to develop a control design framework that exploits
the periodicity knowledge from the platform for analyzing
and synthesizing motion controllers. In particular, the focus
is on feedforward controllers, since they constitute the largest
part of the motion system’s control input [6].

The design of controllers for periodically time-varying
systems has been investigated in [1], [18] and has been
mainly applied to sampled-data designs with an equidistant
sample frequency [2], [5]. These approaches have been fur-
ther developed towards multi-rate sampling, where different
actuator/sensor channels have different rates, see [7], [10],
[13] for feedback designs, [11] for motion feedback control,
and [17] for multi-rate feedforward design.

Although important developments for periodically time-
varying systems have been developed, they are not directly
applicable to feedforward design for a periodic sampling
sequence. The main contribution of this paper is a framework
for the design of feedforward controllers under periodic sam-
pling. This combines the analysis of data-based feedforward
design [3], [15], [16] with non-equidistant sampling, where
the main technical step involves a specific lifting step.

The outline is as follows. First, the problem and control
goal are formulated in section II. The model of the peri-
odically time-varying sampled system is developed in sec-
tion III. This model is used for feedforward controller design
in section IV. In section V, the advantages of describing
and controlling the system as a time-varying sampled system
instead of a conservative time-invariant sampled system are
demonstrated through a simulation example. Finally, conclu-
sions are given in section VI.

Notation Finite dimensional, linear, single-input, single-
output, discrete-time systems are considered. Extension to
multi-input, multi-output systems is straightforward, since
the theory is based on state-space descriptions. Dotted lines
indicate a high equidistant sampling rate, dashed lines a
low equidistant sampling rate, and dash-dotted lines a time-
varying sampling rate. Transfer functions are denoted in
bold, e.g., P . Underlined variables indicate finite-time ma-
trix descriptions. In denotes the n × n identity matrix, ⊗
the Kronecker product, and ◦ the Hadamard product. The
superscript 0 refers to the base period, subscript i refers to
subperiod ∆i.
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Fig. 1. Example timeline where the processor is allocated to either motion
control tasks (cyan) or to non-motion control tasks (purple).
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Fig. 2. Example of periodically time-varying sampling where a period T
consists of three subperiods (n∆ = 3) with K = [1, 1, 2].

II. PROBLEM FORMULATION

In this section, the objective is formulated by defining the
periodic sampling sequence, the control configuration, and
the control goal.

A. Periodic sampling sequence

In this section, the periodic timing behavior observed in
platforms as [8], [14] is described. Such a platform runs
under a time division multiplexing (TDM) policy where the
TDM wheel of length T is divided into a fixed number
of time slots. Depending on the allocation of slots to the
applications, the timing behavior of an application can be
abstracted as shown in Fig. 1. The motion control task is only
allocated and executed in the purple slots. Other applications
run on the cyan slots. The composable nature of the platform
allows for independent analysis of the control application.

Assumption 1 is imposed throughout.

Assumption 1. In a period T there are n∆ subperiods of
length ∆i, i = 0, 1, . . . , n∆−1, which are an integer multiple
of base period ∆0, i.e., ∆i = ki∆

0, ki ∈ N+.

An example of two periods T is provided in Fig. 2, with
the sampling sequence indicated by

K :=
[
k0 k1 . . . kn∆−1

]
.

Note that there is more design freedom with the time-
varying sequence (red) than with the conservative equidistant
sampling sequence (yellow).

Remark 2. Assumption 1 can directly be relaxed at the
expense of more involved derivations.

B. Control configuration

The motion system is controlled via the
feedback/feedforward control architecture depicted in
Fig. 3. The selected configuration is common in motion
control, but the results can readily be extended to other
configurations. Here, P is the motion system, and CFB the
feedback controller acting on the error error ε between the
output ψ and the reference signal ρ. CFF is the feedforward
controller to be designed, see section II-C.

CFB P

CFF

ρ ε +
+

+

−

ψ

Fig. 3. Closed-loop control configuration.
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Fig. 4. Control diagram including the sample rate conversion between the
equidistant rate ∆0 ( ) and the time-varying rate ( ). Only the part
in blue is implemented on the actual system.

Including the periodically time-varying sampling into the
control diagram of Fig. 3 yields Fig. 4. Here, P = DP 0H
is a sampled version of the (linear) plant P 0 at the base rate
∆0, with D and H the down- and upsampler, respectively,
that are defined in section III-D.

C. Control goal
The control goal is to design the feedforward controller

CFF such that error ε is minimized according to a certain
performance criterion. To provide a fair comparison, the
feedback controller CFB is designed at a conservative,
equidistant sampling rate, see also Fig 2. This is by no
means restrictive and can directly be relaxed. The feed-
forward controller is explicitly designed and implemented
at the time-varying rate. To enable a fair comparison, the
tracking error ε0 at equidistant rate ∆0 is used. This data
is often available off-line and can be used in batch-to-batch
feedforward control [3], [9]. The framework can easily be
adapted for evaluation of the tracking error at other rates.

With the definition of the periodically time-varying sam-
pling sequence and the control configuration, the main prob-
lem can be formulated, see Problem 3.

Problem 3. Given the closed-loop configuration in Fig. 4,
with stabilizing CFB , and a periodically time-varying sam-
pling sequence (see for example Fig. 2), determine the
optimal feedforward controller

Copt
FF := arg min

CFF∈P
V 0(CFF ),

where
V 0(CFF ) =

∥∥ ε0
∥∥2

Wε
+
∥∥ ν0

∥∥2

Wν
, (1)

with ‖(·)‖2W = (·)>W (·), Wε
> = Wε � 0, Wν

> = Wν �
0, and where ε0, ν0 ∈ RN0

, N0 ∈ N+, are the lifted domain
equivalents of ε0 and ν0, respectively.

In section IV, the feedforward class P is defined and the
optimal feedforward controller Copt

FF is derived. The latter
requires the relation between ν and ε0 which is derived
next.
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Fig. 5. A single period ∆i consists of ki base periods ∆0 where the input
u0
i remains constant.

III. SYSTEM DESCRIPTION

In this section the time-varying system P and feedback
controller CFB are described in order to express ε0 in
terms of ν. The design of CFF is presented separately in
section IV. In the following sections, a systematic framework
for describing these systems using finite-time descriptions is
presented. In succession, the dynamics during a subperiod
∆i, during a period T , and during a finite length N are
described. Finally, finite-time descriptions of the down- and
upsampler are derived, and the system interconnection is
derived, providing the relation between ε0 and ν.

A. Dynamics during a subperiod

Due to the periodic nature, the system dynamics are iden-
tical for every period T . In order to describe the dynamics
during a period T , a description of the dynamics during
subperiods ∆i is required. In Theorem 4 the dynamics over
a subperiod are provided at rate ∆0. In Corollary 5, the
equivalent dynamics at rate ∆i are presented.

Theorem 4. Let the dynamics of a discrete-time system
with equidistant sampling time ∆0 have state-space rep-
resentation (A0, B0, C0, D0) and let the sampling periods
∆i satisfy Assumption 1, see also Fig. 5. If a zero-order-
hold of period ∆i is applied to the input of this system, i.e.,
u0
i [k + n] = ui[k], n = 0, 1, . . . , ki−1, then the dynamics

during the interval ∆i are given by

x0
i [k + n] = (A0)nx0

i [k] +

n−1∑
j=0

(A0)jB0u0
i [k], n ≤ ki,

y0
i [k] = C0x0

i [k] +D0u0
i [k].

Proof. Follows from successive substitution.

Corollary 5. The equivalent dynamics of the system in The-
orem 4 for sampling time ∆i has state-space representation

[
Ai Bi
Ci Di

]
=

 (A0)ki
ki−1∑
j=0

(A0)jB0

C0 D0

 . (2)

Corollary 5 shows that downsampling the system of
Theorem 4 from sampling time ∆0 to ∆i is equivalent to
considering n = ki steps as a single step.

time
T

u0 un∆
u1 u2 un∆−1

∆n∆−1∆0 ∆1

Fig. 6. The dynamics over a period T is determined by the dynamics of
the n∆ subperiods ∆i.

B. Dynamics during a period

The dynamics during a subperiod at rate ∆i are described
by Corollary 5. By combining the dynamics of the n∆

subperiods, see Fig. 6, the dynamics during a period T
are obtained as provided by Theorem 6. Downsampling this
system to rate T yields a multi-input, multi-output system as
shown by Theorem 7.

Theorem 6. During period T , consisting of n∆ periods ∆i,
the dynamics at time-varying rate ∆i evolve according to

xn =

n∏
j=1

An−j x0 +

n−1∑
i=0

n−i−1∏
j=1

An−jBiui,

yn = Cnxn +Dnun.

with
n∏
j=1

Aj = I for n < 1.

Proof. Follows from successive substitution of the dynamics
in (2) according to Fig. 6.

Theorem 7. The dynamics of Theorem 6 at non-equidistant
rate ∆i have an n∆-input, n∆-output equivalent at equidis-
tant rate T with state-space realization

n∆∑
j=1

Aj
n∆−1∏
j=1

AjB0

n∆−1∏
j=2

AjB1 ··· Bn∆−1

C0

C0A0

...
C0

n∆−2∏
j=0

Aj

D0 0 ··· 0

C0B0 D0
. . .

...
...

. . .
. . . 0

C0
n∆−2∑
j=1

AjB0 ··· Bn∆−2 D0


,

with state xn∆ = xkn∆
(k ∈ N), and input un∆ and output

yn∆ given by

un∆ =


ukn∆

ukn∆+1

...
u(k+1)n∆−1

 , yn∆ =


ykn∆

ykn∆+1

...
y(k+1)n∆−1

 .
Proof. Follows from successive substitution of the relations
in Theorem 6.

Since the system is perceived at time-varying rate ∆i,
Theorem 6 is used for deriving finite-time expressions in
section III-C. Theorem 7 is used for feedforward controller
design in section IV.
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C. Finite-time description of the system

The dynamics over the finite signal length are described
using finite-time descriptions. First, finite-time descriptions
for LTI systems are recapitulated. Second, finite-time expres-
sions for the LPTV system are derived.

Let the single-rate discrete-time system P
s
= (A,B,C,D)

be operating over a finite-time interval [0, N−1]. Then, the
input-to-output behavior is given by

ψ = P ν, P =


p0 0 0 ··· 0
p1 p0 0 ··· 0
p2 p1 p0 ··· 0

...
...

...
. . .

...
pN−1 pN−2 pN−3 ··· p0

 ,
with Markov parameters p0 = D and pi = CAi−1B, i =
1, 2, . . . , N−1. For causal SISO LTI systems, P ∈ RN×N
is a square lower triangular Toeplitz matrix that maps input
vector ν =

[
ν0 ν1 ν2 . . . νN−1

]> ∈ RN to output
vector ψ =

[
ψ0 ψ1 ψ2 . . . ψN−1

]> ∈ RN .
Finite-time descriptions can also be used for LPTV sys-

tems. For time-invariant systems, entries in the finite-time
description correspond to equidistant points in time. This
property is lost for time-varying systems where the entries
correspond to non-equidistant points in time determined by
the sampling sequence K. The finite-time description for the
LPTV system of Theorem 6 is provided by Theorem 8.

Theorem 8. Given a state space realization
(A0, B0, C0, D0) of the system P 0 at equidistant rate
∆0, and a periodically time-varying sampling sequence of
n∆ subperiods per period T , the finite-time description of
P , given the periodically time-varying sampling sequence
K, is given by

P =



D0 0 0 ··· 0
C0B0 D0 0 ··· 0
C0A1B0 C0B1 D

0 ··· 0

...
. . .

. . .
. . .

...
C0

n∆−1∏
j=2

An∆−jB0 ··· ··· C0Bn∆−2 D
0

···
···
···
. . .
···

...
. . .

...
...

...
. . .


,

where Ai = (A0)ki , Bi =
ki−1∑
j=0

(A0)jB0, and P ∈ RN×N .

Proof. Due to space restrictions, the proof is omitted.

Note that P in Theorem 8 is block-Toeplitz with block
size n∆ × n∆. The equidistant sampling case is a special
case of Theorem 8, see Corollary 9.

Corollary 9. If ki = k, ∀i, then (Ai, Bi, Ci, Di) =
(A,B,C,D), ∀i, and the equidistant sampling case is re-
covered as a special case.

D. Finite-time descriptions of rate conversions

In Theorem 8, the finite-time description for the LPTV
system is provided. To describe the full system of Fig. 4
in a finite-time framework, the finite-time descriptions of
the downsampler D and zero-order-hold upsampler H are
required. These are provided by Theorem 10 where it should

be noted that these results can readily be extended to the
situation when there is not an integer number of periods T
present in N .

Theorem 10. For the purpose of exposition, let the time span
of N samples consist of an integer number of periods T , and
define the vectors

τ0
T [n] := n− 1, n = 1, 2, . . . , T∆0 ,

τT [n] :=

0, n = 1,
n−1∑
i=1

ki, n = 2, 3, . . . , n∆ + 1.

The finite-time expression of the downsampler D is

D := IN∆0

T

⊗ DT ,

with DT ∈ Rn∆× T
∆0 given by

DT (i, j) :=

{
1, τT [i] = τ0

T [j],

0, otherwise.

The finite-time expression of the zero-order-hold upsampler
H is

H := IN0∆0

T

⊗ HT ,

with HT ∈ R
T

∆0×n∆ given by

HT (i, j) :=

{
1, τT [j] ≤ τ0

T [i] < τT [j + 1],

0, otherwise.

Proof. See, for example, [12].

Note that both H and D are block-Toeplitz matrices.
Furthermore, note that up-down conversion does not affect
the signal (DH = IN ), whereas down-up conversion does
affect the signal (HD 6= IN0 ).

E. System interconnection

By combining Theorem 8 and Theorem 10, the finite-time
description of the system in Fig. 4 is complete and the system
interconnection can be described. The error ε0 as function
of the feedforward ν is provided by Theorem 11.

Theorem 11. The finite-time error ε0 in Fig. 4 for the
equidistant rate ∆0 is given by

ε0 = S0 ρ0 − S0 P 0H ν,

with S0 =
(
IN0 + P 0HCFB D

)−1
.

Proof. The output at the base rate is given by

ψ0 = S0 P 0H ν + S0 P 0HCFB D ρ0.

The result follows from substituting this expression in ε0 =
ρ0 − ψ0 and rearranging terms.

In this section, finite-time descriptions for the system in-
terconnection of Fig. 4 are presented. Next, these expressions
are used for designing the feedforward filter CFF .
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IV. LIFTED DOMAIN FEEDFORWARD OPTIMIZATION

In Problem 3, the feedforward controller CFF belongs
to a class P . This class is parameterized according to
Definition 12. Parameter β ∈ Rnβn2

∆ contains all parameters
in β

i
, i = 0, 1, . . . , nβ − 1.

Definition 12. The feedforward class P is given by

P =


nβ−1∑
i=0

β
i
◦ ϑi(z)

∣∣∣ β
i
∈ Rn∆×n∆

 ,

with ϑi(z) an n∆-input, n∆-output system of basis functions.

Note that the class P in Definition 12 consists of MIMO
transfer functions in the so-called lifted domain [2]. In the
physical time domain, after reversal of the lifting operator,
it becomes a SISO yet LPTV operator, due to the periodic
sampling sequence. Hence the name lifted feedforward con-
troller. In future work, the choice of basis functions for such
controllers us further explained.

The finite-time description of CFF , denoted CFF (β),
depends on the particular choice of K. Since by Definition 12
it is linear in β, there exists a matrix T βρ ∈ RN×nβn2

∆

satisfying

CFF (β) ρ = T βρ β. (3)

With (3) and combining the results of the previous sec-
tions, the optimal feedforward filter can be computed, see
Theorem 13.

Theorem 13. The optimal solution to Problem 3 with P
according to Definition 12 is given by

βopt =
(
M>WεM+ (T βρ )>Wν T

β
ρ

)−1

M>Wε b,

b = S0 ρ0,

M = S0 P 0H T βρ .
Proof. Substitution of ν = CFF (β) ρ = T βρ β (see (3)) in
Theorem 11 yields ε0 = b− Mβ. Hence, V 0 is quadratic
in β and hence the minimum follows from ∇βV 0 = 0.

Theorem 13 is used in the simulation case study of the
next section.

V. SIMULATION CASE STUDY

Through use of a simulation case study, the advantage
of the periodically time-varying sampling framework intro-
duced in this paper over conservative equidistant sampling
is shown.

A. System definition

The system is based on the rotational two-mass-spring-
damper system shown in Fig. 7a for which the Bode magni-
tude plot is shown in Fig. 7b. The feedback controller CFB

is a lead filter yielding a closed-loop bandwidth of 10 Hz. In
order to have the same feedback controller for each sampling
sequence, the feedback controller is designed at the lowest
rate. The reference signal ρ0 is selected as the fourth order
point-to-point trajectory depicted in Fig. 8.

encoder motor mass 1 mass 2shaft

(a) Photograph of the mechanical setup consisting
of two masses interconnected by a flexible shaft.

101 102 103
−100

−50

0

Frequency [Hz]

M
a
g
.
[d
B
]

(b) Bode magnitude plot of the model for sampling time ∆0 = 1 ms.

Fig. 7. The system P is the model of the collocated control loop from
the motor to the encoder.

0 200 400 600 800 1,000
0π

1π

2π

t0 [ms]

ρ
0
[r
a
d
]

Fig. 8. The reference trajectory is a fourth order point-to-point profile.

B. Sampling sequences

In this case study, the sampling sequence of Fig. 2 is
used, i.e. K = [1, 1, 2], see also Fig. 9. The highest possible
equidistant sampling rate is 2∆0, which is conservative since
in each period T a control point is neglected. The proposed
framework allows to exploit all possible control points. Since
this increases the freedom of the feedforward signal, an
increase in performance can be expected.

The basis functions ϑi(z) in Definition 12 are selected as

ϑi(z) = z−i
[ 1 1 ··· 1

1 1 ··· 1
...

...
. . .

...
1 1 ··· 1

]
.

In the simulation ∆0 = 0.001 s, N0 = 1000, and the weights
in (1) are selected as Wε = 1012IN0 and Wν = 0N0 in order
to minimize ε0.

C. Results

For comparison, the results for sampling at the base rate
∆0 are also presented. Note that this is typically not possible
in practice, but included here as benchmark. The results are
shown in Fig. 10.

The performance metric V 0 as function of nβ for the three
sampling sequences is shown in Fig. 10a. A higher nβ means
a larger operating timespan of the feedforward controller and
therefore an improved performance. This is indeed observed
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Fig. 9. Two periods T of the case study’s timeline with the base rate ∆0

(blue), time-varying sampling (red), and equidistant sampling (yellow).
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(a) Performance metric V 0 vs. number of parameterized periods nβ .
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(b) Error signal ε0 at the start of the motion for nβ = 3.

Fig. 10. Results of the case study for K = [1, 1, 1, 1] ( ), K = [1, 1, 2]
( ), and K = [2, 2] ( ).

for all three cases: V 0 decreases for increasing nβ . As was
expected, the performance of the sampling sequence K =
[1, 1, 2] is worse than for K = [1, 1, 1, 1] (less control points
per period) and higher than for K = [2, 2] (more control
points per period). The time domain error signal ε0 near the
start of the motion is provided in Fig. 10b for nβ = 3.

VI. CONCLUSIONS

A resource-efficient implementation on a class of pre-
dictable platforms leads to a periodically switched system
due to periodic non-uniform sampling periods. The analysis
and controller design of such systems can be done by I)
settling with slower equidistant sampling of the system and
using standard LTI techniques, but this is often conservative
in terms of performance since not all measurement and
actuation points are exploited; or II) controlling the system as
a periodically time-varying system and exploiting all possible
control points. In this paper a framework is introduced that
allows to describe the periodically time-varying systems
of option II). Moreover, the framework allows for optimal
feedforward design incorporating the time-varying sampling
of the system. As a case study, a motion control application
is considered and through simulation it is shown that time-
varying sampling control of solution II) is indeed superior
to conservative equidistant sampling of solution I).

Ongoing work focuses on experimental validation of the
presented work, optimal selection of the sampling sequence,
and design of feedback control, rational feedforward, and
ILC for periodically time-varying systems.
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